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Abstract
The fundamental equation of the thermodynamic system gives the relation between the internal
energy, entropy and volume of two adjacent equilibrium states. Taking a higher-dimensional
charged Gauss–Bonnet black hole in de Sitter space as a thermodynamic system, the state
parameters have to meet the fundamental equation of thermodynamics. We introduce the
effective thermodynamic quantities to describe the black hole in de Sitter space. Considering
that in the lukewarm case the temperature of the black hole horizon is equal to that of the
cosmological horizon, we conjecture that the effective temperature has the same value. In this
way, we can obtain the entropy formula of spacetime by solving the differential equation. We
find that the total entropy contains an extra term besides the sum of the entropies of the two
horizons. The corrected term of the entropy is a function of the ratio of the black hole horizon
radius to the cosmological horizon radius, and is independent of the charge of the spacetime.
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1. Introduction

The Gauss–Bonnet (GB) black hole has been extensively
studied along with the development of string theory. It was
found that the GB black hole has interesting thermodynamic
properties in anti-de Sitter space, especially, fruitful phase
structures in higher-dimensional spacetime [1–6]. So what
thermodynamic properties does the higher-dimensional GB
black hole have in de Sitter space? There are black hole
horizons and cosmological horizons for higher-dimensional
charged GB black holes in de Sitter space. The thermo-
dynamic quantities on the black hole horizon and the cos-
mological horizon all satisfy the first law of thermodynamics,
moreover the corresponding entropies both fulfill the area
formulae [7–10]. In recent years, the investigation of ther-
modynamic properties of black holes in de Sitter space has
received a lot of attention [11–34]. In the early period of
inflation, our universe was in a quasi-de Sitter space. On the
other hand, with the inclusion of mysterious components with
negative pressure, a large number of dark energy models have
been proposed to explain the cosmic acceleration. The sim-
plest candidate for dark energy is the cosmological constant

(or vacuum energy density), with which our universe will
naturally evolve into a new de Sitter phase. Finally, there has
also been flourishing interest in the duality relation of de
Sitter space, promoted by the recent success of AdS/CFT
correspondence in theoretical physics. Therefore, from an
observational and theoretical point of view, it is rewarding to
have a better understanding of the classical and quantum
properties of de Sitter space [35–41]. However, in general the
radiation temperatures corresponding to the two horizons are
not equal. For this reason, when taking the higher-dimen-
sional charged GB black hole in de Sitter space (HGBDS) as
a thermodynamic system, the system is usually unstable. The
thermodynamic quantities on the black hole horizon and the
cosmological one in de Sitter space are functions of mass M,
charge Q and cosmological constant Λ respectively. These
quantities, which correspond to the different horizons, are not
independent of each other. Considering the relation between
the thermodynamic quantities on the two horizons is very
important for studying the thermodynamic properties of de
Sitter space.

Considering the relation between the black hole horizon
and the cosmological one of the HGBDS as a thermodynamic
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system, we obtain the effective thermodynamic quantities of
the HGBDS. In the lukewarm case, the temperatures of the
black hole horizon and that of the cosmological horizon are
the same. We conjecture that the effective temperature should
also take the same value in the special case. In [28, 29], the
authors calculated the corrected entropy for hairy and Kerr
black holes in de Sitter space, respectively. In this way, we
provide the differential equation which the entropy of both
horizons satisfies. We assume that the total entropy includes
the sum of both horizons’ entropy and the interaction term.
The entropy corresponding to the two horizons is a function
of horizon radius and the effective GB coefficient ã. So the
interaction term of the corrected entropy is a function of
horizon radius and the effective GB coefficient ã and is
independent of the charge of the spacetime. The result we
obtained is self-consistent. In this work, we construct a self-
consistent formula for the thermodynamic quantities of de
Sitter spacetime and study the stability and the phase trans-
ition of de Sitter space. This work can provide further
information on the gravity theory of the de Sitter space. The
issue can help us get a clearer understanding of the classical
and quantum properties of de Sitter space.

This paper is organized as follows. In section 2 we simply
review the thermodynamic quantities of the black hole horizon
and cosmological horizon of the HGBDS, and obtain the con-
dition that the effective temperature of the horizon approaches
to zero. By means of the first law of thermodynamics, we obtain
the entropy and the effect temperature of the HGBDS. We study
the condition that the HGBDS satisfies the stable equilibrium of
the thermodynamics in section 3. Section 4 is devoted to con-
clusions. (We use the units = = = =+ G k c 1n B1 .)

2. Charged GB black hole in de Sitter space

The action of d-dimensional Einstein–GB–Maxwell theory
with a bare cosmological constant Λ reads [3]
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where the GB coupling α has dimension [length]2 and can
be identified with the inverse string tension with positive
value if the theory is incorporated in string theory [42, 43],
thus we shall consider only the case α>0. mnF is the
Maxwell field strength defined as = ¶ - ¶mn m m n nF A A with
vector potential Aμ. In addition, let us mention here that the
GB term is a topological term in d=4 dimensions and has
no dynamics in this case. Therefore we will consider d�5
in what follows,
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i j represents the line element of a ( -d 2)-

dimensional maximal symmetric Einstein space with

constant curvature ( )( )- -d d k2 3 and volume Sk. With-
out loss of generality, one may take k=1, 0 and −1,
corresponding to the spherical, Ricci flat and hyperbolic
topology of the black hole horizon, respectively. The metric
function f (r) is given by [1–5]
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where ˜ ( )( )a a= - -d d3 4 , M and Q are the mass and
charge of the black hole respectively, and pressure P
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In order to have a well-defined vacuum solution with
M=Q=0, the effective GB coefficient ã and pressure P
have to satisfy the following constraint
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The black hole horizon +r and cosmological horizon rc
satisfy the equation ( ) =+f r 0c, . The equations ( ) =+f r 0
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From equations (2.6) and (2.7), we can obtain
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From equations (2.3), (2.8) and (2.10), we can obtain
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Some thermodynamic quantities associated with the cosmo-
logical horizon are
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Tc, Sc and Vc denote the Hawking temperature, the entropy
and the volume.

For the black hole horizon, associated thermodynamic
quantities are
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From equations (2.10) and (2.11), when the charge Q of the
spacetime satisfies
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the temperature of the black hole horizon and the ones of the
cosmological horizon are equal,
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From equation (2.17), we plot the T−x plane with different
ãc, d=5 and k=1 in figure 1.

3. The effective thermodynamics of HGBDS

Considering the connection between the black hole horizon
and the cosmological horizon, we can derive the effective
thermodynamic quantities and the corresponding first law of
black hole thermodynamics

( )j= - +M T S P V Qd d d d , 3.1eff eff eff

Figure 1. T with respect to x. We set rc=1.
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here the thermodynamic volume is that between the black
hole horizon and the cosmological horizon, namely [6, 11]
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Considering that ã kc is small, we can formally expand the
total entropy in series of ã kc ,
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here the undefined function f (x), ( )f x1 , ( )f x2 and ( )f xl
represents the extra contribution from the correlations of the
two horizons. When taking Q, ãc as constant and substituting
equations (2.8), (3.2) and (3.3) into equation (3.1), one
obtains the effective temperature Teff
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the temperature of both horizons is equal. In this case we
think that the effective temperature of spacetime is the
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Figure 2. The effective temperature Teff versus x. In (a), -T xeff with different Q and fixed ã = 0.2c . In (b), -T xeff with different ãc and
fixed Q2=0.02. We set rc=1.

Figure 3. The uncorrected entropy S, the corrected terms S̃ for
entropy and the total entropy ˜+S S with respect to x. We set rc=1.
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When d=5, from equation (3.8) one obtains
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When x 0, there is only a cosmological horizon in de
Sitter space. The formula of entropy from equation (2.14) is
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where the function F2 1 denotes the hypergeometric function.
We can obtain f2(x) with the numerical calculation. From
equations (2.14) and (2.15), we obtain the entropy of the
black hole horizon and the cosmological horizon as

( ) ˜
( )

( )

( )

⎡
⎣⎢

⎤
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=

S
+ +

-
-

+- - -S r x
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1 2
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4
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3.14

k
c
d d c d2 2 4

Comparing equations (3.12)–(3.14), we can obtain the cor-
rected terms of the system entropy from the interaction of
both horizons with d=5

˜ ( ˜ ( ) ˜ ( ) ( ) ( )=
å

+ +S r f x f x f x
4

. 3.15k
c
3

1 2

Substituting equation (3.9) into equation (3.4), we can plot the
( ) -T x xeff plane with different ãQ, c and rc=1, k=1 in

Figure 4. ãCQ, c with respect to x. In (a), ˜ -aC xQ, c with different ãc and fixed Q2=0.02. In (b), ˜ -aC xQ, c with different Q2 and fixed
ã = 0.2c . We set rc=1.
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figure 2. From equations (3.3), (3.14) and (3.15), we can plot
the S−x, ˜ -S x and ( ˜ )+ -S S x with k=1 in figure 3.
The specific heat of the HGBDS can be defined as

( )˜
˜

⎛
⎝⎜

⎞
⎠⎟=

¶
¶

a
a

C T
S

T
. 3.16Q

Q
, eff

eff ,
c

c

From figure 4, when < <x x xc0 , the specific heat of the
system is positive, while when < <x x 1c or < <x x0 0, it
is negative. This means that the HGBDS with < <x x xc0 is
thermodynamically stable. From figure 4, we can find that the
region of stable state of the HGBDS is related to the charge Q
and the effective GB coefficient ã, i.e., the region of stable
state becomes bigger as the effective GB coefficient ã or the
charge Q increases.

In this letter, we have presented the entropy of the
HGBDS. It is not only the sum of the entropies of the black
hole horizon and the cosmological horizon, but also includes
extra terms from the correlation between the two horizons. This
idea has twofold advantages. First, without the extra terms in
the total entropy, the effective temperature is different from that
of the black hole horizon in the lukewarm case. This is not
satisfactory. Second, the physical explanation of effective
thermodynamic quantities is still unclear, however, taking
advantage of the method, we obtain the corrected entropy of the
HGBDS, which may make the method more acceptable.

4. Discussions and conclusions

The thermodynamic quantities of the black hole horizon and
the cosmological one in de Sitter space are functions of mass
M, charge Q and cosmological constant Λ respectively. These
quantities, which correspond to the different horizons, are not
independent of each other. It is not possible to fully realize the
thermodynamic properties of de Sitter space by studying the
thermodynamic system of the two horizons in de Sitter space
separately. So, we can take the state parameters in de Sitter
space as the state parameters in the whole system. We know
that the state parameters in the whole system satisfy the first
thermodynamics law. So, we can obtain the effective temp-
erature Teff and the total entropy ˜+S S by the above dis-
cussion and calculation.

Because the radiation temperatures of the two horizons
are different, the spacetime did not meet the requirements of
the stability of the thermodynamic equilibrium, so the system
is unstable. Considering the correlation between the black
hole horizon and the cosmological horizon, we can obtain the
only effective temperature Teff of the higher-dimensional
charged GB black hole in de Sitter space from equation (3.4).
From ˜ -aC xQ, c

(figure 4), when x>xc or x<x0, we know
that the higher-dimensional charged GB black hole in de
Sitter space is unstable. The system cannot be thermo-
dynamically stable for the thermodynamic system does not
meet the thermodynamic equilibrium conditions. In the Uni-
verse, there is only possible a higher-dimensional charged GB
black hole in de Sitter space that meets the conditions of
x0<x<xc because the cosmological constant is associated

with a vacuum that describes the most fundamental theories
of nature, such as quantum gravity, and de Sitter space is
closely connected with the evolution of our Universe.
According to these effective thermodynamic quantities, one
can even discuss the entropic force between the two horizons,
which can be used to explain the expansion of our universe
[41, 44]. A deeper understanding of the quantum nature of de
Sitter space is undoubtedly helpful to establish self-consistent
quantum gravity theory.
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